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Absti=t

Heat flow from both internal and external sources and temperature of the

environment create machine deformations, resulting in positioning errors between the tool

and workpiece. If the error can be predicted from a nmsonable number of inputs, it can then

be removed in ml time by the machine controller. Although much research is currently

being performed in the field of thermal error compensation, there is no industrially accepted

method. Them me many possible input-output correlations, and the models can be

established empirically, analytically, or by some combination of these. I haveseleeteda
simple model that linearly dates discrete temperature measurements to the deflection. The

largest barrier to the success of this type of model is how to (1) locate the temperature

sensors and (2) determine the number of required temperatm sensors so the model is

robust enough to perform under varying operating conditions. This research develops a

method to determine the number and location of temperate measurements. The approach

assumes that adequate knowledge of the temperate distribution completely determines the

deflection at any instant in time, so the model is not time dependent. An advantage to this

approach is that warm-up and cool down situations can be represented by the same model

as steady state conditions. Furthermo~, the model is based on the analytical solution to

thermally induced deflections.

Introduction
.

Machine deformation is caused by a varying temperature field throughout the

machine due to changing operating conditions. The cause-effect dationship is pictorially

represented in Figtue 1. The most complex mo&l frostrelates the operating conditions to

the imposed heat flows. The heat flows w used to determine the temperature field and the

temperattue field is then used to determine deformations. Finite element analysis is a useful

tool to determine the model. However, in practice this method has not been successful

because the output is very depen&nt on the particular boundary conditions.

Simpler models relate experimentally measured deformations to measured inputs.

The form of the model can be analytically determined or purely empirical. Them am three

types of inputs that can be considered: (1) operating conditions,(2)heatflows,and(3)
temperaturefield.A modelbasedonheatflowsor temperaturefieldsmeasuresdiscrete
locations.Difilcukieswiththeseapproachesare(1)wheretomeasuretheinputand(2)
howmanyinputsare required.Thenumberandlocationof inputsmayvaryas the
operatingconditionschange.A modelbasedon operatingconditionsis usuallyvery
complex.Furthermore,modelsusingeitherheatflowor operatingconditionsas inputsare
timedependentdueto thethermalcapacitanceof themachinestructure.



Opeaating Hea Flow Tempemture

n Opemtional TllemKd

(- -
MotklMo&

Figure 1: Causes of Thermal Deformation

Possibly because the last mentioned difficulty, most cument research is attempting

to capture the temperature prof~. Given the complete temperature distribution through the

machine, the tool point error can be precisely determined with no time dependencies. A

variety of approaches are being employed to determine optimal temperature sensor locations

and the number of required temperature sensors. The focus of this research is to develop a

procexhue for determining the optimum number and location of temperature sensors that

lead to a robust model.

Current Metho&

The basic approaches include ftite element analysis (FEA), which is purely

analytical, and both neural network and statistical approaches, which are purely empirical.

Combinations of empirical and theoretical approaches also exist where an empirical

approach is taken to determine the temperature distribution and a theoretical approach is

taken to determine the resulting deflection. Purely analytical approaches have not been

successful since the boundary conditions m not typically known.

The simplest empirical approach attempts to relate selected measumd temperatures

to the tool point deflection. The largest barrier to the success of these methods is how to (1)

locate the temperature sensors and (2) &termine the number of required temperature

sensors. Some researchers have used engineering expertise to locate temperature sensors

near thermal sources. However, the relationship between the source temperatures and tool

point deflection is often non-linear. Therefore a large amount of data is quired to

adequately train the model. Other nxearchers have placed many temperature sensors on the

machine and have used either statistics or neural networks to determine the optimum subset

of sensors. The most popular approach is a combination, where engineering expertise is

used to place more sensors than the system requires and then statistics or a neural network

is used to determine the optimum location and number of sensors. Some researchers have

used as many as 100 temperature sensors on the machine to determine the optimum subset.
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Researchersusuallyassumethatthisprocessmustbe performedonlyoncefora
givenmachineconfigurationandthentheresultscanbe appliedto anyothermachineof
similardesign.However,the processof selectionusuallyrequheslargeamountsof data,
temperaturesensors,andtimeandisoftennotpracticalto thecommonmachineuser.
Furthermore,it is notappmmtthattheoptimumsensorsforoneparticularmachinearethe
sameoptimumsensorsfor anothermachinein a diffenmtoperatingenvironment

Forthesereasons,thisworkfocusesondevelopinga methodof determiningthe
numberandlocationof temperaturemeasurements.Thisapproachassumesthatknowledge

of thetemperaturedistributioncompletelydeterminesthedeflectionat anyinstantin time.
Therefore,thepointis to detamine thenumberandlocationof temperaturemeasurements

requiredto xepresentthemachinedeformationundervaryingoperatingconditions.An
advantageto thisapproachis thatwarm-upandcool-downsituationscanbe representedby

the same modelas steadystateconditions.Furthermore,a modelhasbeenselectedthatis
basedon thephysicsof the system.
Techn ica] Aumoach

The heart of this approach is based on the assumption that a temperate distribution

in a particularregion on a machine can be estimated by a polynomial. As boundary

conditions change, the coefficients of the polynomial change, but the order of the

polynomialis alwaysequal to or lessthana ftite value. The model must have the ability to

track the error under varying boundary conditions. This includes warm-up and cool-down

cycles as well as changing velocities and changing environmental conditions. To achieve

this robustness, the model must be independent of the coefficients of the polynomial. An

approach has been chosen where the location and number of sensors are dependent on the

order of the polynomial but not on the actual coefficients of the polynomial. This will

produce a robust model that has good tracking capability. Furthermore, less data is quid

to fit this model and the model will have better extrapolating abilities.

Simplified one-dimensional heat flow

The one-dimensional deflection caused by a temperature distribution is

~= ~a(x)T(xw = afqxw
o (1)

where

Ax = deflection in the x direction,

a(x) = coefficient of thermal expansion as a function of x,

T(x) = temperature distribution as a function of x, and

L = length in the x direction.
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For a given region, assume that the thermal coefficient of expansion is constant in x. The

estimate of the deflection in x can then be thought of as a numerical integration problem,

where the integral is numerically approximated as

j’~(~~‘[~1~(~1)+wz~(~z)+...+w.~(~.)] = ifw~~(~i), (2)
o i=l

so the numerical approximation of the deflection is

AX= #W~T(X~) + W2Z’(X2) + . . . + W~T(X~)] = ~i~lWiT(Xi). (3)

There ae many common forms of numerical integration such as the Forward and

Backward Cauchy Euler methods. However, in order to integrate the above equation

exactly with the minimum number of points, Gaussian integration is used. First, assume

the temperature distribution can adequately be repmented by a polynomial of order ~

k

zT(x) = aO+ qx + ~xz + ... + akxk = ajxj. (4)
j=O

Then the deflection in x is approximately proportional to the integral of the temperatm

distribution in Equation (3). Substituting (4) into (1) and integrating results in,

[

2 3

I

anx(n+l) L
&=a aox+~+~+...+

~ aj L(j+O

(n+ 1)
=a~ (5)

o
j=o (j+ 1) “

Equation (5) is then set equal to (3),

H 11
~aj ~(j+l)

Ax=ai Wi iiajx~ =aZ
1-
.- j=O j=() (~+ 1) “

Reammging,

kn. #+1)
CX~LZj ~[WiX/ 1 .—

j=O i=l = aj$oa~ (~ + 1)”

(6)

(7)

Since the polynomial coefficients are completely arbitrary, the terms in front of each

coefficient on each side of Equation (7) can be equated, resulting in k+l equations and 2 n

unknowns, where n is the number of integration points and k is the order of the

polynomial. “f’hemfore,the optimum number of integration points is

2
(8)

Canceling out like terms results in the following k equations.



L(J+l)
f[WiX/]=~; j = 0,1,2,..., k
i=l

Eachindividualequationis

fwi=~;j=o

i=l
L2

f[wixi]=~; j=l
i=l

(9)

(lo)

(11)

.

..

nX[ ]
L(n+l)

‘ix:‘~; ‘=” (12)
i=l

The order of the polynomial can be determined by theoretical analysis such as FEA. Even

simpler, the order of polynomial can be directly determined by the number of boundary

conditions (heat sources and convection surfaces).

The procechue is to determine the order of polynomial that best represents the

temperature field. Then based on the polynomial order and limits of integration, determine

the optimum number and location of temperature sensors. Since the effective coeffkient of

expansion is not known, temperature data and resulting deformations are measured

throughout the expected operating conditions. The appropriate weighting is determined

using a least squares procedwe. This linear equation can then be used to predict

deformations from measumd temperatures.

Position dependent errors

Some thermally induced errors are also position dependent. This is due to the fact

thattheposition of the axes changes the effective structural loop between the tool point and

workpiece. As an example, the pitch emor of the x axis is not only dependent on

temperature but also on the x position. On the other hand, spindle axial growth is not

dependent on the position of the axes since the enthe spindle is always included in the

structural loop. Up to this point, the proposed method is only applicable to position

independent errors. This method can be extended to position dependent errors in the

following way.

A similar numerical integration procedure is used for position dependent errors.

However, since the limits of integration change for different axes positions, the location of

temperature sensors cannot be dependent on the limits of integration as they were in the

previous case. Instead, the procedure sets the temperature sensor locations, and the weights

5



now become a function of position. As shown in Equation (8), the~ iue still k+l

equations. However, the location of the temperature measurements are pre-se~ so there am

only n unknowns. TheRfore, the optimum number of integration points is

n=k+l. (13)

As an example, consider a simplifkxi fmt order temperature distribution where

T(x) = alx+q, x G {O, L}. (14)

According to Equation (13), this temperature distribution requires two discrete temperate

meamements. First the locations of these two measurements are pre-set to specitlc values,

xl and Xz.Plugging this into Equation (7) and integrating between Oto an arbitrary value x

results in

X2
[wl(qxl +%)+ wz(alxz +q)] = qx+al-j-. (14)

The coefilcients of the polynomial w completely arbitrary and the weight functions are not

&pendent on these coefficients. Relating terms containing each coefficient on the left hand

side of Equation (14) to the right hand side results in two equations,

X2
Wlxl + W2X2= ---, (15)

W1+W2 =X. (16)

Solving Equations (15) and (16) for the weights results in

X2– 2X2X

‘1 = 2(X1- X2)
=ax2+bx, (17)

-X2 +2X1X =CX2+*
W2=

2(X1- X2)
. (18)

Theprocedureis to set thelocationof thetwosensors(forthisf~storderexample).Then
temperaturedataandresultingdeformationsaremeasured throughout the expected

operating conditions. Using a least squares procedure, the appropriate coefilcients for the

weights (a, b, c, and d in Equations (17) and (18)) are determined. This linear equation can

then be used to predict deformations from mem.ued temperatmes.

As a general rule, the weight function contains terms from x to Xk+’,where k is the

order of polynomial that adequately represents the temperate f~ld.

Multi-dimenswnal heat jlow

This procedure can be easily extended to multiple dimensions. For a complete p

order polynomial in d dimensions, the number of terms in the polynomial is
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~ (p+d)!
= P!d! “

(19)

For example, a complete second order polynomial in three dimensions is

T(x,y,z) = q + alx2 + azx + a3y2 + a4y + a5z2 + a6z + apy + qyz + agxz. (20)

Equation (20) contains ten terms. According to Equation (19), the number of terms is

~=(z+v=lo
2!3! “

(21)

This temperate distribution will xesult in m equations, one for each arbitrary coefficient.

If the particular error is not position dependent, them am (d+l)*n unknowns, where n is

the number of temperature measwements. Therefore, the required number of temperature

measurements is

m (p+d)!
n2—

d+l=p!(d+l)!.
(22)

For the complete second order polynomial in three dimensions, three temperature

measurements are required. This mmhs in twelve unknowns (WI,Xl, yl, Z1,W2,X2,Y2,q,

w~, X3,y~, zJ. Two of the locations can be set arbitrarily and the remaining ten unknowns

are found by solving the ten equations.

Conversely, if the error is position dependent the position of the sensors me pre-

set as explained in the previous section and the weight fimctions become a function of

position. If the error is dependent on the position of only one axis, then positions along

that axis are pre-determined pre-set. Then the number of unknowns reduces by n, so the

number of required sensors is

(p+d)!
n>?=

d p!d!d -

For the complete second order polynomial in three dimensions, four temperature

measurements are required.

This option is mom practical when designing a new machine where embedding the

sensors into the machine structure is an option. If retrofitting an existing machine, this may

not bean option. In this case, as more locations of the sensors are pre-determined, more

sensors are required.

Test Set Up.

Two test set-ups have been designed. The purpose of the fmt set-up is to study this

approach using a simple, one dimensional heat flow problem with a known, controlled heat

source. The purpose of the second set-up is to apply this theory to an actual spindle.

(23)



The first test stand consists of a hollow, 305 mm aluminum tube mounted

vertically, shown in Figure 2. One end is attached to a granite block while the other end is

free. A capacitance gage is used to measuxe growth at the f= end. A total of nine

thermistors ate mounted along the length of the tube, and the temperature of the granite

block along with ambient temperature we also monitcmd.

Figure 2: Test Set-Up 1

The second test stand consists of a horizontally mounted spindle attached to a

granite block The spindle has an integral motor with chilled watercooling around the

motor. In this configuration, only axial growth was madeled because the radial growth and

tilt were insignificant due to symmetry. Thermistors m mounted along the body of the

spindle to measure the temperature distribution. The mandrel in the spindle is super invar

to reduce its thermal growth. Differential eddy cument sensors are used to measure radial

growth and tilt while a capacitance gage is used to measum axial growth. The test set-up is

shown in Figure 3.
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Figure 3: Test Set-Up 2

~

Test Set-Up 1 - Aluminum Tube

Nine temperature sensors were placed along the length of the aluminum tube. A thin

wire with current running through it was used as a single point heat sowce. Axial growth

was measured for the heat source at 8.75” fkomthe granite block. Temperature and growth

measurements were taken when maximum cument was applied for 20 minutes. Then the

heat source was removed and data wem taken for 20 more minutes while the aluminum

tube cooled. The temperature profile could be represented by a third order polynomial. By

Equation (6), two points are required for numerical integration.

Five additional sets of data were acquired for model verification, using equal or less

current through the heat wire. The statistical approachselectedthesameoptimumsensor
locationsas the Gaussianintegrationapproach.Asa quantitativemeasureof the fi~the
meansquarederror between prdcted and measured growth are calculated mportd in

Table 1.

Table 1:Mean Squared Error, Aluminum Tube Tests

Data set
1
2

3
4
5

T(XAL

Statistical (pm? I Gaussian (~m2)

1.85*104 1.85*104
2.58*104 2.58*104
5.~* 10A 5.~* 10A

5.83*104 5.83*104
3.23* 10A 3.23*10_’

18.50* 104 I 18.50*104
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Table 2: Mean Squared Error, Aluminum Tube Tests with Reduced Data Set

Data Set Statistical~ Gaussian (pm2)

1 3.28*104 1.80* 104
2 2.65* 10-4 2.52*104
3 5.44*1O”4 4.73*104
4 5.64*104 5.59*104
5 2.89*104 3.19*104

‘IvrAL 19.90*10-4 17.83*104

To test the robustnessof theapproach,thesizeof thedatausedto fit themodelwas
reducedbyselectingeverytwentiethpoint.Themodelwasthenfitwiththesmallerdata
set.Forcomparison,a statisticalapproachwasusedto selectthetwobest tem~rature
measurements.Usingthereduceddataset,thestatisticalapproachselecteddifferent

optimumtemperaturesensors.Theperformanceof theGaussianmodel~mained
approximatelythesame,whiletheperformanceof thestatisticalmodelwasdegraded,as
reportedin Table2.

Test Set-Up 2 - Spindle Test Stund

Nme temperate sensors we~ placed along the spindle body. The spindle speed

was varied from 1000 RPM to 6000 RPM over a 24 hour period. Spindle cycling during

the test is plotted in Figure 5. This data was then used to fit the model. To assess the model

performance, the model prediction was compared to measu~d growth of nine sets of

independently acqti data.

The observed temperattue distribution could be adequately represented by a ftith

order polynomial for all boundary conditions, as shown in Figure 4. According to Equation

(6), the optimum number of Gaussian integration points is three.

Using b temperature sensors, a comparison of the statistical approach versus the

Gaussian integration approach to determine optimum sensor locations was made. The

residual mean squared error (difference between model prediction and measured data) for

the data used to fit the model was less for the statistical approach. However, when

comparing the model prediction to a set of independently acquired measurements not used

during the fitting process, the Gaussian integration approach performed better.

Furthermore, as less data is used to fit the model, the performance of the statistical

approach decreases signiilcantly, while the Gaussian integration approach only slightly

decreases. This indicates that the statistical approach requires more data to achieve an

adequate fit.
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Table 3: Sum Squared Error

Data Set

1
2
3
4
5
6
7
8

2.1150
1.7384
0.8315
0.5247
0.6891
0.6891
5.7754
2.3671

Gaussian (P2)
0.9517
1.1953
0.8641
0.8859
0.4538
2.7146
1.4842
3.1123

lvrAL I 19.4347 I 13.0405

As a quantitative number to assess performance, the mean squared emor between

predicted and measued growth for nine independently acquired data sets was calculated.

During the nine tests, spindle speed was varied. Three of the nine tests are plotted in

Figures 6-8. The mean squared error for each of the nine data sets is reported in Table 3.
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We have demonstrated that the Gaussian integration approach is a viable method for

sekcting the optimum temperature locations for the thermal growth model. The approach is

robus~ performing under a variety of operating conditions. Advantages over statistical

approaches include (1) the model is related to the actual physics of the system, (2) the

optimum number and location of temperature measurements can be determined without

acquhing any da~ and (3) less data is required to train the model.

To implement this approach on a machine, we must first determine a method of

breaking the machine into individual units. The temperature profde of each unit must be

adequately represented by a finite order polynomial. Next we must determine a method to

determine the highest order polynomial that can adequately repment the temperature profde

under varying operating conditions. This method ideally will not require additional
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temperature measurements.Instead,thepolynomialorderwillbedhectlyAated to the
locationandnumberof boundaryconditionson theindividualutit
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